How long are the arms in DLA?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 L29
(http://iopscience.iop.org/0305-4470/20/1/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:39

Please note that terms and conditions apply.

LETTER TO THE EDITOR

How long are the arms in dla?

Harry Kesten
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

Received 20 October 1986

Abstract

We show that the maximal length of the arms of DLA can grow at most at a rate of $n^{2 / 3}$ in dimension 2 and at a rate of $n^{2 / d}$ in dimension $d>2$. Here n denotes the volume or mass of the aggregate.

Much attention has been paid in the last few years to the growth model known as diffusion-limited aggregation (DLA) (see for instance the many articles in Stanley and Ostrowsky (1986) (in particular Witten (1986) and Meakin (1986))) and the many talks at the 1986 Statistical Physics Meeting in Boston. We discuss here only the most classical of the dLA models, the Witten-Sander model on the hypercubic lattice z^{d} (Witten and Sander 1981). We denote the aggregate of n particles by A_{n}. A_{1} consists only of the origin 0 in z^{d}. In the Witten-Sander model A_{n+1} is formed from A_{n} by releasing a particle 'at infinity' and letting it perform a (nearest-neighbour) symmetric random walk on z^{d} until it reaches a boundary site of A_{n}. (A boundary site of A_{n} is a vertex of z^{d} adjacent to A_{n}, but not in A_{n}.) If y is the first boundary site visited by the particle, then $A_{n+1}=A_{n} \cup\{y\}$, i.e. A_{n+1} is formed by adding y to A_{n}. We shall give a more formal description in remark 3 , but first we state our result.

Theorem. Let

$$
r_{n}:=\max \left\{|x|: x \in A_{n}\right\}
$$

denote the 'radius' of A_{n}. There exists a constant C_{d}, depending only on the dimension d, such that
$\frac{1}{n^{2 / 3}} r_{n} \leqslant C_{2} \quad$ eventually with probability 1 in dimension 2
and
$\frac{1}{n^{2 / d}} r_{n} \leqslant C_{d} \quad$ eventually with probability 1 in dimension $d>2$.
Remark 1. Family (1986) has shown that if A_{n} looks like a cross with needlelike arms along the coordinate axes in $d=2$ then the length of the arms of A_{n} should grow at the rate $n^{2 / 3}$. Turkevich (1986) assumed that A_{n} was diamondlike, which resulted in a growth rate of $n^{3 / 5}$ for r_{n} in dimension two. Here we make no a priori assumptions on the shape of A_{n}. It will be seen later that our estimates are quite crude, so that it seems quite possible to us that the actual growth rate of r_{n} is smaller than $n^{2 / 3}$ for $d=2$.

Remark 2. Various people (cf Witten (1986, pp 65, 66), Meakin (1986, p 120) and the references cited there) have argued that, for large d, r_{n} should grow at most like $n^{1 /(d-1)}$, and perhaps for $d=2,3,4$ like $n^{(d+1) /\left(d^{2}+1\right)}$. Clearly (2) is a much worse estimate.

Remark 3. The description of the formation of A_{n+1} from A_{n} was somewhat informal, in that we cannot release a particle at infinity. Moreover, for $d \geqslant 3$ such a particle will never hit the boundary of A_{n}. To circumvent these difficulties we take limits of hitting probabilities. Let S_{0}, S_{1}, \ldots be the successive positions of a particle performing a nearest-neighbour symmetric random walk on z^{d} (starting at S_{0}). Let B be a collection of lattice sites and let $T=T(B)$ be the hitting time of B, i.e.

$$
T(B)=\min \left\{n \geqslant 0: S_{n} \in B\right\}
$$

($T(B)=\infty$ if S_{n} never is in B). The hitting position of B is therefore $S_{T(B)}$. The hitting distribution is given by

$$
H_{B}(x, y):=\operatorname{Pr}\left\{S_{T(B)}=y \mid S_{0}=x\right\} \quad y \in B .
$$

It is known (Spitzer 1976, theorem 14.1) that for $d=2$ and any finite B

$$
\begin{align*}
& \mu_{B}(y):=\lim _{|x| \rightarrow \infty} H_{B}(x, y) \quad \text { exists } \quad y \in B \tag{3}\\
& \sum_{y \in B} \mu_{B}(y)=1 . \tag{4}
\end{align*}
$$

Thus μ_{B} defines an honest probability distribution. For $d=2$ we apply this with $B=\partial A_{n}:=$ boundary of A_{n}. We form A_{n+1} by adding to A_{n} a site y_{n+1}, where y_{n+1} is chosen according to the distribution $\mu_{\partial A_{n}}$.

For $d \geqslant 3$ the limit of $H_{B}(x, y)$ for $|x| \rightarrow \infty$ is identically zero (Spitzer 1976, prop. 25.3). One obtains a non-trivial limit distribution for y by conditioning on $\left\{T_{B}<\infty\right\}$, the event that B is visited at some time. In fact, for $d \geqslant 3$ the limit

$$
\begin{align*}
\mu_{B}(y) & :=\lim _{|x| \rightarrow \infty} H_{B}(x, y)\left(\sum_{z \in B} H(x, z)\right)^{-1} \\
& =\lim _{|x| \rightarrow \infty} \operatorname{Pr}\left\{S_{T(B)}=y \mid S_{0}=x, T(B)<\infty\right\} \tag{5}
\end{align*}
$$

exists and satisfies (4) (cf Spitzer (1976, prop. 26.2) when $d=3$; the same proof works for $d>3$). Again we choose the point y_{n+1}, to be added to A_{n}, according to the distribution $\mu_{\partial A_{n}}$.

In order to prove this, first one derives a uniform upper bound for $\mu_{\partial A_{n}}(y)$ in terms of r_{n} or n, and then one shows how this limits the growth rate as described in (1) and (2). We describe some more details in the following steps. Steps (i) and (ii) consider $d=2$ only, while step (iii) discusses $d \geqslant 3$.

Step (i). Take $d=2$ and let A_{n}, and hence ∂A_{n} be fixed, and also fix a point $y \in \partial A_{n}$. Then there exists a site z_{0} in A_{n} which is adjacent to y and a path $z_{0}, z_{1}, \ldots, z_{m}$ of vertices of z^{2} in A_{n} such that $\left|z_{0}-z_{m}\right| \geqslant \frac{1}{2} r_{n}\left(z_{i+1}\right.$ and z_{i} are adjacent on $\left.z^{2}, 0 \leqslant i<m\right)$. This is so because A_{n} is connected and has radius r_{n}. Thus, there exists a path $z_{0}, z_{1}, \ldots, z_{l}$ in A_{n} from z_{0} through 0 to some point z_{l} with $\left|z_{l}\right|=r_{n}$. Then $\left|z_{0}-0\right| \geqslant \frac{1}{2} r_{n}$ or $\left|z_{0}-z_{l}\right| \geqslant \frac{1}{2} r_{n}$, so that we can take for z_{0}, \ldots, z_{m} either the first part of z_{0}, \ldots, z_{l} (connecting z_{0} to 0) or the whole path z_{0}, \ldots, z_{1}. If the random walk particle starts outside A_{n} and hits ∂A_{n} first in y, then it actually hits y before it hits the path $\left\{z_{0}, z_{1}, \ldots, z_{m}\right\} \subset A_{n}$. Therefore, if we take $B=\left\{y, z_{0}, z_{1}, \ldots, z_{m}\right\}$, then

$$
\begin{equation*}
\mu_{\partial A_{n}}(y) \leqslant \mu_{B}(y) \tag{6}
\end{equation*}
$$

Technically the hardest part of the proof is to show that, no matter what the path B with end-to-end distance $\geqslant \frac{1}{2} r_{n}$ is, $\mu_{B}(y)$ cannot be much larger than the hitting probability at $y=0$, when B is a straight line segment along the negative x axis of length $\frac{1}{2} r_{n}$. Specifically, there exists a constant K^{*}, such that

$$
\mu_{B}(y) \leqslant K^{*} \mu_{C}(\mathbf{0})
$$

when

$$
\begin{equation*}
C=\left\{0,(-1,0),(-2,0), \ldots,\left(-\frac{1}{2} r_{n}, 0\right)\right\} \tag{7}
\end{equation*}
$$

$\mu_{C}(0)$ can be estimated explicitly and (6) and (7) together result in

$$
\begin{equation*}
\mu_{\partial A_{n}}(y) \leqslant \frac{K}{\sqrt{r_{n}}} \tag{8}
\end{equation*}
$$

for some fixed K. This estimate holds for all connected sets A_{n} with $0 \in A_{n}$ and radius r_{n}, and $y \in \partial A_{n}$.

We point out that the analogue of (7) for planar Brownian motion (even with $K^{*}=1$) is a known inequality for harmonic measures. It is sometimes called the Beurling circular projection theorem (cf Ahlfors 1973, theorem 3.6). The rather technical proof of (7) which mimicks Beurling's proof will be given in a separate paper.

Step (ii). Equation (8) supplies us with a limit on the growth rate of r_{n}. In fact, we claim that with probability 1 there exists a random but finite k_{0} such that

$$
\begin{equation*}
r\left(2^{k+1}\right)-r(l) \leqslant \frac{K 2^{k+4}}{\sqrt{r}(l)}+2^{k / 2} \quad \text { for all } k \geqslant k_{0}, 2^{k} \leqslant l \leqslant 2^{k+1} \tag{9}
\end{equation*}
$$

Here we have written $r(n)$ instead of r_{n} for typographical reasons. Once one has (9) it is not too difficult to show that any sequence of positive r_{n} which is increasing and satisfies $r_{n+1}-r_{n} \leqslant 1$ as well as (9) must also satisfy (1) with $C_{2}=28\left(1+5 K^{2 / 3}\right)$.

Let u_{1}, \ldots, u_{s} be a path without double points on z^{2}. We say that this path is filled in order if each u_{i} eventually belongs to A_{n}, and if $n_{1}<n_{2}<\ldots<n_{s}$, where n_{i} denotes the smallest n for which $u_{i} \in A_{n}$. To obtain (9) note that for any vertex $x \in A_{n}$ there exists a path $u_{1}=0, u_{2}, \ldots, u_{s}=x$, from 0 to x, in z^{2} which is contained in A_{n} and filled in order (in particular $s \leqslant n$). The existence of such a path is easily established by induction on n. If we now take $n=2^{k+1}, 2^{k} \leqslant l<2^{k+1}$, and $x \in A_{2^{k+1}}$ such that $|x|=r\left(2^{k+1}\right)$, then the piece of the path leading to this x from its last crossing of the circle of radius r_{l} is a path without double points, $u_{t}, u_{t+1}, \ldots, u_{s}$, with the following properties:

$$
\begin{align*}
& r(l)<\left|u_{t}\right| \leqslant r(l)+1 \tag{10}\\
& r(l)<\left|u_{i}\right| \leqslant r\left(2^{k+1}\right) \quad t \leqslant i \leqslant s \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
u_{t}, \ldots, u_{s} \text { is filled in order during the time interval }\left[l+1,2^{k+1}\right] \tag{12}
\end{equation*}
$$

If

$$
\begin{equation*}
r\left(2^{k+1}\right)-r(l) \geqslant \frac{K 2^{k+4}}{\sqrt{r}(l)}+2^{k / 2}+1 \tag{13}
\end{equation*}
$$

is to occur, then in addition we must have

$$
\begin{equation*}
s-t \geqslant \frac{K 2^{k+4}}{\sqrt{ } r(l)}+2^{k / 2} \tag{14}
\end{equation*}
$$

Set

$$
\begin{equation*}
m=\frac{K 2^{k+4}}{\sqrt{r}(l)}+2^{k / 2} \tag{15}
\end{equation*}
$$

Then (13) can occur only if there exists a path $u_{t}, u_{t+1}, \ldots, u_{t+m}$ which satisfies (10)-(12) with s replaced by $t+m$. The number of paths of length m satisfying (10) and (11) is at most

$$
\begin{equation*}
4 \pi^{2}\left(r_{l}+1\right) 4^{m} \tag{16}
\end{equation*}
$$

Now fix a path u_{t}, \ldots, u_{t+m} with the properties (10) and (11) for $k=t+m$. We shall estimate the probability of (12) for this path. Assume that at time $n \in\left[l+1,2^{k+1}\right]$, A_{n-1} already contains u_{t}, \ldots, u_{ν}, but not yet $u_{\nu+1}$. Define

$$
I_{n}= \begin{cases}1 & \text { if } u_{\nu+1} \text { is the vertex added to } A_{n-1} \text { to form } A_{n} \\ 0 & \text { otherwise }\end{cases}
$$

I_{n} is the indicator function of a successful filling of a new site of the given path in order at time n. For (12) to occur it is necessary that

$$
\begin{equation*}
\sum_{l+1}^{2^{k+1}} I_{n} \geqslant m \tag{17}
\end{equation*}
$$

However, if we write $\operatorname{Pr}\left\{I_{n}=1 \mid \mathscr{F}_{n-1}\right\}$ for the conditional probability of $\left\{I_{n}=1\right\}$, given A_{n-1}, then (8) tells us that

$$
\operatorname{Pr}\left\{I_{n}=1 \mid \mathscr{F}_{n-1}\right\} \leqslant \frac{K}{\sqrt{ } r(n-1)} \leqslant \frac{K}{\sqrt{ } r(l)} \quad n>l
$$

Consequently, for $l \geqslant 2^{k}$

$$
\sum_{l+1}^{2^{k+1}} \operatorname{Pr}\left\{I_{n}=1 \mid \mathscr{F}_{n-1}\right\} \leqslant K\left(2^{k+1}-l\right) \frac{1}{\sqrt{ } r(l)} \leqslant K 2^{k} \frac{1}{\sqrt{ } r(l)}
$$

and also the expected number of sites \boldsymbol{u}_{i} which are successfully filled up in order during $\left[l+1,2^{k+1}\right]$ is at most $K 2^{k}(r(l))^{-1 / 2}$. A direct application of known exponential bounds, e.g. using Freedman (1973, theorem 4b) with

$$
a=m=K 2^{k+4} \frac{1}{\sqrt{ } r(l)}+2^{k / 2} \quad b=K 2^{k} \frac{1}{\sqrt{ } r(l)} \leqslant \frac{m}{16}
$$

now shows that conditionally on A_{l}
$\operatorname{Pr}\left\{(12)\right.$ occurs for the given path $\left.u_{t}, \ldots, u_{t+m}\right\} \leqslant \operatorname{Pr}\{(17)$ occurs $\} \leqslant\left(\frac{1}{16} e\right)^{m}$.
In view of (15), (16) and $r_{l} \leqslant l<2^{k+1}$, it now follows that

$$
\begin{align*}
\operatorname{Pr}\left\{r\left(2^{k+1}\right)-\right. & \left.r(l) \geqslant K 2^{k+4} \frac{1}{\sqrt{r}(l)}+2^{k / 2}+1\right\} \\
& \leqslant \operatorname{Pr}\left\{(12) \text { occurs for some path } u_{t}, \ldots, u_{t+m} \text { satisfying }(10) \text { and }(11)\right\} \\
& \leqslant 4 \pi^{2} 2^{k+1}\left(\frac{4}{16} e\right)^{m} \leqslant 4 \pi^{2} 2^{k+1}\left(\frac{1}{4} e\right)^{2^{k / 2}} \tag{18}
\end{align*}
$$

The sum of the right-hand side of (18) over l in $2^{k} \leqslant l<2^{k+1}$ and then over $k=1,2, \ldots$ is finite. This implies (9) by means of the Borel-Cantelli lemma (see Feller 1968, lemma VIII.3.1).

Step (iii). When $d \geqslant 3$ (8) has to be replaced by

$$
\begin{equation*}
\mu_{\partial A_{n}}(y) \leqslant K n^{-1+2 / d} \tag{19}
\end{equation*}
$$

for each connected set A_{n} in z^{d} of n sites, and $y \in \partial A_{n}$. (19) is obtained from the identification of $\mu_{B}(y)$ in (5) as

$$
\begin{equation*}
e_{B}(y)\left(\sum_{z \in B} e_{B}(z)\right)^{-1} \tag{20}
\end{equation*}
$$

where $e_{B}(y)$, the escape probability of B from y, is the probability that a random walk S_{0}, S_{1}, \ldots starting from $S_{0}=y$ never returns to B (see Spitzer 1976, prop. 26.2). The numerator in (20) is clearly $\leqslant 1$, while Spitzer shows that the denominator equals the 'capacity' of B. Since the hitting distribution of ∂A_{n} is the same as that of $A_{n} \cup \partial A_{n}$, we find that

$$
\mu_{\partial A_{n}}(y) \leqslant\left[\text { capacity of }\left(A_{n} \cup \partial A_{n}\right)\right]^{-1}
$$

from which it is not hard to obtain (19). The proof of (2) from (19) is similar to step (ii).

References

Ahlfors L V 1973 Conformal Invariants (New York: McGraw-Hill)
Family F 1986 Statistical Physics Meeting, Boston Paper
Feller W 1968 An Introduction To Probability Theory And Its Applications (New York: Wiley) 3rd edn
Freedman D 1973 Ann. Prob. 910
Meakin P 1986 On Growth And Form ed H E Stanley and H Ostrowski (Amsterdam: Martinus Nijhoff) pp 111-35
Spitzer F 1976 Principles of Random Walk (Berlin: Springer) 2nd edn
Stanley H E and Ostrowski H (ed) 1986 On Growth And Form (Amsterdam: Martinus Nijhoff)
Turkevich L A 1986 On Growth And Form ed H E Stanley and H Ostrowski (Amsterdam: Martinus Nijhoff) pp 293-8
Witten T A 1986 On Growth And Form ed H E Stanley and H Ostrowski (Amsterdam: Martinus Nijhoff) pp 54-68
Witten T A and Sander L M 1981 Phys. Rev. Lett. 471400

